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A UNIFIED MATHEMATICAL APPROACH TO IMAGE ANALYSIS

ABSTRACT. This report describes a unified approach to the mathematical modelling and
statistical analysis of pictures. The results reported here were derived from the research
project "Nomparametric Estimation by the Method of Sieves" supported by the U.S. Army
Research Office, Contract DAAG29-83-K-G116 to Brown University. Early in the project,
the investigations focussed on the estimation of (properties of) digitized images; this focus
was a natural extension of (i) our earlier work on the method of sieves for regularizing
statistical estimates of infiite dimensional objects and (ii) the groundwork that had been
laid for General Pattern Theory. The present report presents the Bayesian paradigm for
mathematical modeling and analysis of digital images and then describes four instances of
the paradigm in detail. Directions for ongoing and future research are also indicated.

1. INTRODUCTION

Computational image analysis encompasses a variety of applications involving a sensing
device, a computer, and software for restoring and possibly interpreting the sensed data.
Most commonly, visible light is sensed by a video camera and converted to an array of mea-
sured light intensities, each element corresponding to a small patch in the scene (a picture
element, or pixel). The image is thereby digitized, and this format is suitable for computer
analysis. In some applications, the sensing mechanism responds to other forms of light,
such as in infrared imaging where the camera is tuned to the invisible part of the spec-
trum neighboring the color red. Inrared liHt is emitted in proportion to temperature, and
thus infrared imaging is suitable for detecting and analyzing the temperature profile of a
scene. Applications include automated inspection in industrial settings, medical diagnosis,
and targeting and tracking of military objects. In single photon emission tomography, as a
diagnostic tool, individual photons, emitted from a radiopharmaceutical (isotope combined
with a suitable pharmaceutical) are detected. The objective is to reconstruct the distri-
bution of isotope density inside the body from the externally-collected counts. Depending
on the pharmaceutical, the isotope density may correspond to local blood flow (perfusion)
or local metabolic activity. Other applications of computer vision include satellite imaging
for weather and crop yield prediction, radar imaging in military applications, ultrasonic
imaging for industrial inspection and a host of medical applications, and there is a growing
role for video imaging in robotics.

The variety of applications has yielded an equal variety of algorithms for restoration



and interpretation. Unfortunately, few geneoa principals have emerged and no common
foundation has been layed. Algorithms awe by and large ad hoc; they are typically dedicated
to a single application, and often critically tuned to the particulars of the environment
(ligting, weather conditions, magnification, and so-on) in which they are implemented.
It is likely that a coherent theoretical framework would support more robust and more

poeful algorithms. A well-studied candidate is regulu1wization theory (see (45) and [521,
and references therein), which has been successfully applied to a variety of vision tasks. We
have been exploring a related approach based upon probabilistic image models, well-defined
principals of inference, and a Monte Carlo computation theory. Exploting this framework,
we have recently obtained encouraging results in several areas of application, including

tomography, texture analysis, and scene segmentation.

In the section that follows (12) we lay out, briefly, our paradigm in its general for-
mulation. Then, in each of 13, 14, and 15, we discuss an area of application, to texture
segmentation and classification, boundary detection, and single photon emission tomogra-
phy, respectively. In each application section we summarize our previous work and identify
directions for further research. In §6 we describe extensions of the methodology to more
ambitious, high-level, vision problems. This entails extending our probability image models
to accommodate more global, geometric, image attributes.

2. BAYESIAN PARADIGM

In real scenes, neighboring pixels typically have similar intensities; boundaries are usually
smooth and often straight; textures, although sometimes random locally, define spatially
homogeneous regions; and objects, such as grass, tree trunks, branches and leaves, have

peerdrelations and orientations. Our approach to picture processing is to articulate such
regularities mathematically, and then to exploit them in a statistical framework to make
inferences. The regularities are rarely deterministic; instead, they describe correlations and
likelihoods. This leads us to the Bayesian formulation, in which prior expectations are
formally represented by a probability distribution. Thus we design a distribution (a prior)
on relevant scene attributes to capture the tendencies and constraints that characterize the
scenes of interest. Picture processing is then guided by this prior distribution, which, if
properly conceived, enormously limits the plausible restorations and interpretations.

The approach involves five steps, which we shall briefly review here (see [22) and

[33) for more details). This will define the general framework, and then, in the following
three sections, we will concentrate on the analysis of texture, boundary detection, and
tomography as illustrative applications.
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IMAGE MODEL. This is a probability distribution on relevant image attributes. Both

for reasons of mathematical and computational convenience, we use Marlov random field.

(MRFs) as prior probability distributions. Let us suppose that we index all of the relevant

attributes by the index set S. The set S is application specific. It typically includes indices

for each of the pixels (about 512 x 512 in the usual video digitization) and may have other

indices for such attributes as boundary elements, texture labels, object labels and so-on.

Associated with each site a E S is a real-valued random variable X., representing the state

of the corresponding attribute. Thus X. may be the measured intensity at pixel a (typically,

X. E {0, ...255)), or simply I or 0 as a boundary element at location a is present or absent.

The kind of knowledge we represent by the prior distribution is usually local, which is

to say that we articulate regularities in terms of small local collections of variables. In the

end, this leads to a distribution on X = {X.).Es with a more or less local neighborhood

structure (again, we refer to [221 and [331 for details). Specifically, our priors are Markov

random fields: there exists a (symmetric) neighborhood relation G = (G,}.fs, wherein

G, g S is the set of neighbors of s, such that

II(X. = z.IX, = z,,r E Sr 0 a) = il(X. = z.IX, = zr E G.)

il(alb) is conditional probability, and, by convention, a f G.. G symmetric means s E

G, o r E G.. (Here, we assume that the range of the random vector X is discrete; there

are obvious modifications for the continuous or mixed case.)

It is well known, and very convenient, that a distribution n defines a MRF on S with

neighborhood relation G if and only if It is Gibbs with respect to the same graph, (S,G).

The latter means that U has the representation

(2.1) If(z)= Iexp{-U(z)l

where

(2.2) U(Z)= Vc(z)
ceC

C is the collection of all cliques in (S, G) (a clique is a collection c of sites such that every

two sites in c are neighbors), and V.(z) is a function depending only on {z,),c. U is known

as the energy, and has the intuitive property that the low energy states axe the more likely

states under 1I. The normalizing constant, z, is known as the partition function. The Gibbs

distribution arises in statistical mechanics as the equilibrium distribution of a system with

energy function U.
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As a simple example (too simple to be of much use for real pictures) suppose the

pixel Intensities are known, a priori, to be one of two levels, minus one (black) or plus one

(white). Let S be the N x N square lattice, and let G be the neighborhood system that

corrmesponds to nearest horizontal and vertical neighbors:

O - - .

I I I
O -0 -0

I I I
O - O - O -

For picture processing, think of N as typically 512. Suppose that the only relevant regularity

is that neighboring pixels tend to have the same intensities. An energy consistent with this

regularity is the Ising potential:

U(X) =ae9
l,,'l

where 1;1,,4 means summation over all neighboring pairs 8,t E S. The minimum of U is

achieved when x. = zt, Vs, t E S. Under (2.1), the likely pictures are therefore the ones

that respect our prior expectations; they segment into regions of constant intensities. The

larger f, the larger the typical region. Later we will discuss the issue of estimating model

parameters such as .8. (With energy function above, II in (2.1) is called the Ising model. It

models the equilibrium distribution of the spin states of the atoms in a ferromagnet. These

spins tend to align themselves with each other and hence the favored configurations contain

connected regions of constant spins.)

One very good reason for using MRF priors is their Gibbs representations. Gibbs

distributions are characterized by their energy functions, and these are more convenient

and intuitive for modelling than working directly with probabilities. See, for example, [20],

[22], [24), f33), and [45] for many more examples, and §3, §4, and §5 below for more complex

and useful MRF models.

DEGRADATION MODEL. The image model is a distribution ll(.) on the vector of

image attributes X = {X.)JEs. By design, the components of this vector contain all of the

relevant information for the image processing task at hand. Hence, the goal is to estimate

X. This estimation will be based upon partial or corrupted observations, and based upon

the image model, i.e., the prior distribution. In emission tomography, X represents the

spatial distribution of isotope in a target region of the body. What is actually observed is
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a collection of photon counts whose probability law is Poison, with a mean function that

is an attenuated Radon transform of X. In the texture labelling problem, X is the pixel

intensity array combined with a corresponding array of texture labels. Each label gives the

texture type of the associated pixel. The observation is only partial: we observe the pixels,

which are just the digitized picture, but not the labels. The purpose is then to estimate the

labels from the picture.

The observations are related to the image process X by a degradation modeL This

models the relation between X and the observation process, say Y = {Y.}.ET. For texture

analysis, we will define X = (XP, XL), where X P is the usual grey-level pixel intensity

process, and XL is an associated array of texture labels. The observed picture is just

X P , and hence Y = XP: the degradation is a projection. More typically, the degradation

involves a random component, as in the tomography setting where the observations are

Poisson variables whose means are related to the image process X. A simpler, and widely

studied (if unrealistic), example is additive white noise. Let X = {X.}.Js be just the basic

pixel process. In this case T = S, and for each s E S we observe

Y. = X.+w.

where, for example, ({.),Es is Gaussian with independent components, having means 0

and variances cr2 , and (q.) is independent of the X-process.

Formally, the degradation model is a conditional probability distribution, or density,

for Y given X: II(ylz). If the degradation is just additive white noise, as in the above

example, then

l(YX) = ( )I2 exp{f - Z p.- .)2)

For labelling textures, the degradation is deterministic; II(yz) is concentrated on y = z P

where z = (zP,zL) has both pixel and label components.

POSTERIOR DISTRIBUTION. This is the conditional distribution on the image pro-

cess X given the observation process Y. This posterior or a posteriori distribution contains

the information relevant to the image restoration or image analysis task. Given an ob-

servation Y = V, and assuming the image model (11(z)) and degradation model (ll(ypI)),

the posterior distribution reveals the likely and unlikely states of the "true" (unobserved)

image X. Having constructed X to contain all relevant image attributes, such as locations

of boundaries, labels of objects or textures, and so on, the posterior distribution comes to

play the fundamental role in our approach to image processing.
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The posterior distribution is easily derived from Bayes' rule

n(v z)nl(z)

The denominator, 11(y), is difficult to evaluate. It derives from the prior and degrada-
tion models by integration: 11(y) = f II(ylx)1(dx), but the formula is computationally

intractable. Happily, our analysis of the posterior distribution will require only ratios, not

absolute probabilities. Since y is fixed by observation, 1/11(y) is a constant that can be

ignored (see paragraph below on Computing).

As an example we consider the simple Ising model prior, with observations corrupted

by additive white noise. Then

ja,tl

and ( 1 l~l/ex •{1 --. v
1I(,jx) =/2 -(y. }

BES

The posterior distribution is then
1exp{13  

-~z 1- ( -z1I(Zly) = -pf 0,t 202'sy
ZP aES

We denote by z. the normalizing constant for the posterior distribution. Of course, it

depends on y, but the latter is fixed. Notice that the posterior distribution is again a MRF.

In the case of additive white noise, the neighborhood system of the posterior distribution

is that of the prior, and hence local.

For a wide class of useful degradation models, including combinations of blur, additive
or multiplicative colored noise, and a variety of nonlinear transformations, the posterior

distribution is a MRF with a more or less local graph structure. This is convenient for our

computational schemes, as we shall see shortly. We should note, however, that exceptions

occur. Indeed, nonlocal graph structures that incorporate long-range interactions are useful

and are completely consistent with the Bayesian paradigm. In tomography, for example, the

posterior distribution is associated with a highly non-local graph. This particular situation

incurs a high computational cost (see [24] and §5 below for more details) as a consequence

of each site in the graph having a high degree.

ESTIMATING THE IMAGE. In our framework, image processing amounts to choosing

a particular image x, given an observation Y = y. One choice is the maximum a posteriori,

or MAP estimate:

choose x to maximize I(zly)

6



The MAP estimate chooses the most likely z, given the observation. In many applications,

our goal is to identify the MAP estimate, or a suitable approximation. Often, though, other
estimators are more appropriate (see Besag [4] for an insightful discussion). We have found,

for example, that the posterior mean (f zII(dzlp)) is more effective for tomography, at least

in our experiments (see §5).

The computational issues for posterior mean and MAP estimators are similar. For

illustration we concentrate here on MAP estimation. In most applications we cannot hope

to identify the true maximum a posteriori image vector x. To appreciate the computational

difficulty, consider again the Ising model with added white noise:

(2.3) ll(_lv) = I exp{f F t -1_(y _T)2}
a,tj ES

This is to be maximized over all possible vectors z = {zf.,s E {-1, 1}S . With ISI -. 105,

brute force approaches are intractable; instead, we will employ a Monte Carlo algorithm

which gives adequate approximations. (Remarkably, this particular example can be solved

exactly, using techniques from network flow theory, see [29].)

Maximizing (2.3) amounts to minimizing

UP(X) -'6E 'Xt+1 F,(Ys ._ X. ) 2U()= -f *t+ ~Z

181tj 2aES

which might be thought of as the posterior energy. (As with zp, the fixed observation y is

suppressed in the notation Up(z).) More generally, we write the posterior distribution as

1
(2.4) - exp{-U,(x)}zp

and characterize the MAP estimator as the solution to the problem

choose x to minimize U,(z)

The utility of this point of view is that it suggests a further analogy to statistical mechan-

ics, and a computation scheme for approximating the MAP estimate, which we shall now

describe.

COMPUTING. When exploring a specific application, it is our consistent experience
that computation-intensive algorithms for image aialysis can be made fast by suitable

compromises and exploitation of special structure. Still, as a research tool, it has been

invaluable to have available a general computational framework, which we now describe in

the context of MAP estimation.

7



Pretend that (2.4) is the equilibrium Gibbs distribution of a real system. Recall that

MAP estimation amounts to finding a minimal energy state. For many physical systems

the low-energy states are the most ordered, and these often have desirable properties. The

state of silicon suitable for wafer manufacturing, for example, is a low-energy state. Physical

chemists achieve low-energy states by heating and then slowly cooling a substance. This

procedure is called annealing. Cern [10] and Kirkpatrick [40] suggest searching for good

minimizers of U(.) by simulating the dynamics of annealing, with U playing the role of

energy for an (imagined) physical system. In our image processing experiments, we often

use simulated annealing to find an approximation to the MAP estimator.

Dynamics are simulated by producing a Markov chain, X(1),X(2), ... with transition

probabilities chosen so that the equilibrium distribution is the posterior (Gibbs) distribution

(2.4). One way to do this is with the Metropolis algorithm [47]. More convenient for image

processing is a variation we call stochastic relaxation. The full story can be found in [22] and

[33]. Briefly, in stochastic relaxation we choose a sequence of sites s(1),s(2),... E S such
that each site in S is visited infinitely often. If X(t) = x, say, then Xr(t + 1) = X,, Vr $
s(t),T E S, and X(t)(t + 1) is a sample from

=(X.(t) -iX, z,t, 6 s(t)),

the conditional distribution on X,(t), given X. = z,, Yr 0 s(t). By the Markev property,

II(X.(t) = .IX, = x,, r s(t)) = U(X(t) = IX , = Z,, E GP t))

where {GP1.,Es is the posterior neighborhood system, determined by the posterior energy

Up(.). The prior distributions that we have experimented with have mostly had local neigh-

borhood systems, and usually the posterior neighborhood system is also more or less local

as well. This means that IGP,)l is small, and this makeE it relatively easy to generate,

Monte Carlo, X(t + 1) from X(t). In fact, if fl is the range of X,(), then

(2.5) II(X,(t) = alXr = Xr, r E Gt)) = Il(a, (t)X)

where
a= r = s(t)

xr , # 1(t)
Notice that (fortunately!) there is no need to compute the posterior partition function

zp. Also, the expression on the right-hand side of (2.5) involves only those potential terms

associated with cliques containing s(t), since all other terms are the same in the numerator

and the denominator.
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To simulate annealing, we introduce an artificial temperature into the posterior dis-

tribution:

T(X) = exp{-Up(x)/T}
Zp(T)

As T --+ 0, iT(-) concentrates on low energy states of Up. To actually find these states,

we run the stochastic relaxation algorithm while slowly lowering the temperature. Thus

T = T(t), and T(t) 10. IIT(t)(') replaces Hl(-) in computing the transition X(t) --* X(t+ 1).
In [22] we showed that, under suitable hypotheses on the sequence of site visits, s(1), s(2),...:

If T(t) > c/(1 + log(1 + t)), and T(t) 0 0, then for all c sufficiently large X(t) con-

verges weakly to the distribution concentrating uniformly on {x : U(z) = minyU(y)}.

More recently, our theorem has been improved upon by many authors. In particular,

the smallest constant c which guarantees convergence of the annealing algorithm to a global

minimum can be specified in terms of the energy function Up (see (27] and (37]). Also, see

Gidas [28] for some ideas about faster annealing via renormalization group methods.

In the experiments to be described here, MAP estimates are approximated by using

the annealing algorithm or deterministic variations of annealing. This involves Monte Carlo

computer generation of the sequence X(1),X(2),..., terminating when the state ceases to

change substantially.

3. TEXTURE SEGMENTATION AND CLASSIFICATION

Texture synthesis refers to computer generation of homogeneous patterns, usually intended

to match a natural texture such as wood, grass, or sand. In many instances, Markov random

fields provide good models, and Metropolis-like Monte Carlo methods yield respectable

facsimiles of the real textures ([15],[17]). Here we combine MRF texture models, for the

pixel process, with an Ising-like texture-label process, in order to segment and label a scene

consisting of patches of natural textures. The image model thereby involves both a pixel

process, of grey-level intensities, and a label process, whose components identify the texture

type of each picture element in the scene. Our approach is similar to those of Derin and

Elliott [171 and Cohen and Cooper [14], especially in our use of this two-tiered image model.

IMAGE MODEL. The image process comprises a pixel process and a label process,

X = {XP,XL}. As usual, the pixel sites form an N x N square lattice, say S'. For

each pixel site there is a corresponding label site, and thus the graph associated with the

image model has sites S = SP U SL, where SL is just a copy of Sp . The elements of S P

and SL index the components of X' and XL, respectively, so that XP = {XP}_s p and

9



XL = {X=} ES. In the experiments reported here, the pixels were allowed sixteen possible

grey levels X P E {0,1,0..., 15},Vs E SP , whereas the range of the labels depended on the

actual number of textures in the scene, thus assuming this number to be known a priori. Let

M be the number of textures that are to be modelled. Then X.L E {1,2,...,M},Vs E SL.

We shall develop the image model by first assuming that the texture type is fixed,

say type I and constant over the scene. Conditioned on XL = I E {1,2,...,M},Vs E SL,

the process XP is a Markov random field:
1

l(xPjX L = I,s E SL)= -- exp{-U('1 (xP)}

where P ) is the usual normalizing constant

z =Zexp{-U1 1(XP)1
zP

Only pair-cliques appear in the energy UM. There are six types of pair-cliques, as shown

in Figure 1. These we index by i E {1,2,3,4,5,6}. We denote by < s,t >i a pair of sites

s, t which form a type i clique, and by E<,,>, the summation over all such pairs. With

these conventions, the (conditional) energy is

6

(3.1) U(i)(ze) - E 1 (X _ P ), b(A) (1 + (IAI/b)2)
i=1 <S,t>i

for some fixed b > 0. Notice that $(x p - xP) is larger when zx = xp, and is monotonic
in Ix' - zXI. Because of this, the texture-dependent parameters 6 1,...,6 0 determine the

degree to which neighboring pixels, of a particular type of pair-clique, will tend to have

similar grey levels. In fact, if 0}0 > 0, then for texture I we expect pixel pairs x, and xt,

of clique type i, to typically have similar intensities. If Oi0) < 0 then the tendency is to

be different. Of course, these simple rules are complicated by the actions of the other five

types of pair-cliques.

K0000

Figure 1.

The parameters 0! ) , for i = 1,2,...,6, and I = 1,2,...,M are estimated from pictures

of the M textures, as explained in the subsection on Parameter Estimation, below. On the

10



other hand, 4, and indeed the neighborhood structure, is ad hoc. We have used f exten-

sively in other applications in which our main concern is with the difference of intensities

between neighboring pixels. Of course the quadratic, $(A) = A2, is simpler, but it unduly

penalizes large differences.

Having modeled the M textures, we now construct a composite Markov random field

which accounts for both texture labels, XL = {X, 3 E SL}, and grey levels, X P -

{X P ,  E SP}. The joint distribution is

(3.2) Il(X P = P,XL = XL) - exp{-UI(P,zL) - U2 (XL)}

z

in which U2 promotes label bonding (we expect the textures to appear in patches rather than

interspersed) and U, specifies the interaction between labels and intensities. Specifically,

we employ a simple Ising-type potential for the labels:

(3.3) U2(ZL) = -1 .Z lzL=L + E w(z ), /3> 0
at) SES

Here 0 determines the degree of clustering, [s, t] indicates a pair of nearest horizontal or

vertical neighbors, and w(-) is adjusted to eliminate bias in the label probabilities (more on

the choice of w(.) later).

To describe the interaction between labels and pixels we introduce the symbols

r1 ,r2,... , r6 to represent the lattice vectors associated with the 6 pair-cliques (Figure 1).

Thus a and s + Tr are neighbors, constituting a pair with clique type i. The interaction is

then given in terms of pixel-based contributions,
6

(3.4) H(Xl,,) _. _ ' {4(x - + t(xr - X )
i=1

and local sums of these called block-based contributions,

(3.5) Z(X P,I,) _. 1 E H(xp,,t).
a tEN,

Here, N, is a block of sites centered at s (5 x 5 in all of our experiments), and the constant

a is adjusted so that the sum of all block-based contributions reduces to U(M (see(3.1)):

(3.6) U(1)(XP) =E Z(XP', 's)
sES

This amounts to ensuring that each pair-clique appears exactly once (a = 50, for example,

when N, is 5 by 5). In terms of (3.4) and (3.5), the interaction energy, U(xP,XL), is

written

(3.7) UI(XP, XL) = z(XP, X', 8).
sES
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Because of (3.6), the model is consistent with (3.1) for homogeneous textures, X L =l,Vs E

S. The idea is that each local texture label, X L, is influenced by the pixel grey levels in a

neighborhood of 9.

Finally, to clarify the bias correction term w(.), we briefly examine the local char-

acteristics of the field, specifically the conditional distributions for the labels given all the

intensity data and the values of the neighboring labels. (The actual neighborhoods of the

Markov random field corresponding to (3.2) can be easily inferred from (3.3) and (3.7).)

The log odds of texture type k to type j is

,loIg r = klXL = x.L. s 4 r; Xf = SE, S)log fr( L .90r ; Xf =x, s E S)J

= Z(zP,j, r) - Z(xp,k, r) +,0 E (,z =k - 1ZL,=i ) + w(j) - w(k)
t:[t,r,

_1 o k) 6 o)) +.(rX
Z Z Sk W){'(' + $(4 -T p

"=1 'EN,
+ (1.1, 1=,=j) + w(j) - w,(k)

t:i,,,'

The first term imposes fidelity to the data x P , and the second bonds the labels. The efficacy

of the model depends on the extent to which the first term separates the two types k and j,

which can be assessed by plotting histograms for the values of this quantity both for pure

k and pure j data. A clean separation of the histograms signifies a good discriminator.

However, since we are looking at log odds, we insist that the histograms straddle the origin,

with positive (resp. negative) values associated with texture type k (resp. j). The function

w(.) makes this adjustment.

DEGRADATION MODEL. The degradation is deterministic. The observation process

is the pixel process Y - X P , and hence the degradation is just the projection (XP, XL)
X P .

POSTERIOR DISTRIBUTION. In this special case, the posterior energy is the same

as the prior energy, but some of the components are fixed. In particular

II ((xP, XL)y) = -exp {-U(xP,XL) - U2 (XL)} l=V
zp

Equivalently, we simply use ll(xLlxp) as the posterior distribution:

II(XLIxP) = -exp {-Ul(xP,xL) - U2 (XL)}

12
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ESTIMATING THE IMAGE. We use MAP estimation: Given an observation, XP
Pwe seek xL to minimize U1(ZP,ZL) + U2(XL).

COMPUTING. We use stochastic relaxation, with simulated annealing, as described in
J2. A convenient starting point is arrived at by "turning off" the Ising term in the label
model (3.3): we set e=0. Since this is the only label/label interaction term in the model,
the MAP estimate of zL with 03=(, is detemned by (lclly) optimizing x.t ac

a E SL. The computation time is negligible. Thereafter, we set P3 to the model value (see

the subsection on Parameter Estimation, below) and begin stochastic relaxation. In the

experiments, each site was visited about 150 times.

EXPERIMENTAL RESULTS. Three experiments were done on texture discrimination,
based on two images with two textures each and one with four. There are four textures

involved: wood, plastic, carpet, and cloth. As mentioned above, the parameters were es-

timated from the pure types (see the subsection on Parameter Estimation, below). There

was no pre- or post-processing. In particular, no dfort was made to "clean-up" the bound-

aries, expecting smooth transitions. The results are shown in Figures 2, 3, and 4; these

correspond to i) wood on plastic, ii) carpet on plastic, and iii) wood, carpet, and cloth on

plastic background.

FIGURES 2,3,4 ARE PLACED AT THE END OF THE TEXT.

In each figure, the left panel is the textured scene, and the right panel shows the

segmentation, with texture labels coded by grey level. It is interesting to note that the grey

level histograms of the four textures are very similar (Figure 5); in particular, discrimination

based on shading alone is virtually impossible.

The model is not really adequate for texture synthesis; samples generated from the

model do not resemble the texture very well. Evidently, the utility of Markov random

field models does not depend on their capacity for simulating real-world imagery. A more

serious drawback of our model is that it is dedicated to a fixed repertoire of textures,
viewed at a particular orientation and at a particular magnification, or range. The problem

is easier if the goal is merely segmentation, without recognition. We are experimenting with

segmentation algorithms that are basically scale and orientation independent. Indeed, there

are no texture-specific parameters. These are built upon the same modelling/computing

13
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framework.

PAR.AMETER ESTIMATION. The performance of the model is not unduly sensitive
to the choice of 6 (see (3.1)) or 0 (see (3.3)), which were determined by trial and error. On
the other hand, the pair-clique parameters 94i = 1, 2..,6,1 = 1, 2,..-, M characterize the
Al textures, and critically determine the ability of the model to segment and label. Needless
to say, these must be systematically estimated. Trial and error is not feasible.

We have estimated the parameters from samples of the M textures. These training
sampler, contain only one texture each, and we used just one sample for each texture. For a
fixed texture, say wood, and from a single sample, say *P, the problem then is to estimate

~I,2,-.9ein the model

ll(XP = ZP;6) = expf -U(zp ; 0))

14



where

U(X";8) = - 9,9(=.'- XP)
i=1 <S.t>i

and

z(9) = ex p{-U(zP;0))
'P

(We include 0 - (06,...,9.) in II, U, and Z to emphasize the dependencies on the unknown

parameters.) The standard approach is to maximize the likelihood:

choose 0 to maximize 11(iP; 0)

Of course, maximizing U is equivalent to maximizing log II. It is easily demonstrated that

the latter is concave in 0 with gradient

(3.8) Viog II(iP;#) = { zp - itP) - Es [ *(Xf' - XP)J .

where Ee[.] is expectation with respect to l1(.; 0). This suggests a gradient ascent procedure,

but the expectation E#j-J is intractable, involving summation over the entire range of XP.

In our experiments, we used a 16 grey-level scale for the pixels, and 204 x 204 lattices; then

the expectation in (3.8) has 16("x ° ) terms. An alternative to brute force evaluation is

to use stochastic relaxation (see 12), which produces an (asymptotically) ergodic sequence

XP(l),XP(2),... for any given 0, and from which expectations can be approximated by

appropriate time-averages. This, too, is computationally intensive, but feasible. In some

settings we have found no alternative, and this Monte Carlo procedure has worked well,

albeit slowly (see (431). See also Hinton and Sejnowski (391 for a closely related algorithm,

used to model learning in a theory of neuron dynamics.

For homogeneous random fields, such as our image models, Besag (21,[31) has pro-

posed an ingenious alternative to maximum likelihood, known as maximum pseudolikelihood.

The pseudolikelihood function is

PL(ip; 0) =" H- (xp = i."IXf = i;P,, 0 3;0)
*ESP\8S'

where OSP is the boundary of SP under the neighborhood system determined by the energy

U, and SP\OS P is the complement of OSP relative to SP. The pseudolikelihood estimator

is the 0 that maximizes PL(ip; 0). Recently, we have lent some analytic support by estab-

lishing consistency of pseudolikelihood in the large-graph limit (see Geman and Graffigne
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[23]). The result is independent of critical phenomena, or lack of spatial stationarity, both

of which can occur with infinite volume Gibbs states having translation-invariant potentials

[54].

We emphasize the overwhelming computational advantage of pseudolikelihood. As

with the log likelihood function, the log pseudolikelihood function, log PL(:i; 0), is concave,

but this time the gradient is directly computable:

Vlog PL(iP;9)= V 0 { , {(- p ) + - -,
AESe\Bsp 1"=

(where E. is summation over pixel grey levels, zero through fifteen in our experiments)

= - , ,.)+- _,
SES\SP

-E,[*(X. - -'X + x.Pd)IX" =,,,,.r ,]a}

This time, the expectation is tractable. The conditional distribution on Xf, given Xf =

i, r 0 a, involves only those variables if' in the neighborhood of s. Furthermore, this

time the summation for the expected value is over the range of Xf only, which has only

sixteen values. In short, the gradient of the log pseudolikelihood is directly computable,

and therefore gradient ascent is feasible without resorting to time-consuming Monte Carlo

methods. For the texture experiments discussed above, the pair-clique parameters were

estimated, for each texture type, by gradient ascent of the pseudolikelihood function.

Some modifications of maximum likelihood and pseudolikelihood have been recently

introduced by Chalmond (11]. A third alternative was suggested by Derin and Elliott

((17],[181), and has been studied and analyzed extensively by Possolo (531. This involves a

regression fit of the log of the local conditional probabilities, and works best when there are

a small number of values in the range of the random variables. For example, the method is

very effective for Ising-like models.

DIRECTIONS FOR FUTURE RESEARCH. We are continuing to study the follow

ing related issues:

(1) Performance otf Etimators. Rates of convergence, and error bounds, for parameters

estimated by pseudolikelihood merit further study. We hope to deepen our understanding
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of how pseudolikelihood estimators compare to maximum likelihood estimators and to work

in the direction of an elementary distribution theory for the pseudolikelihood method.

(2) Better Models for Texture Synthesis. We shall begin with the recent advances by

Cohen and Cooper [14].

(3) Model-independent Segmentation. We have begun development of a method for

segmenting textured images without classifying the types of textures present. This approach

requires no training. Preliminary versions of the model have performed well, but our analytic

understanding is limited. The prior is again a Markov random field, but on a random graph

structure. The random graph is employed to simplify computation of the MAP estimator.

Indeed, experiments suggest that the posterior distribution has no local minima, and hence

lends itself to simple iterative improvement. We wiln try to settle the conjecture that, in a

large graph ':-Wt, there are no local minima in the energies of this class of Markov random

fields with random graphs.

The classical Ising model provides a simple example. The usual, nearest-neighbor,

energy is

U(X) = - t
I,,'l

where z, E {-1, 1),a E SN - N x N square lattice, and is summation over all pairs

of horizontal and vertical nearest neighbors. Of course the two configurations that achieve

the minimum of U are obvious (all +I's and all -l's), but nevertheless difficult to find by

the usual Metropolis-like relaxation methods. This is because there are many flat ridges

and local minima in the energy landscape. Consider, instead, a random graph SN, with

fixed degree (say 4), and let this define the neighborhood system in the expression for U.

Our simulations suggest that for N sufficiently large U has no ridges or local minima; it can

be minimized by iterating through SN, sequentially changing the states z, to create the

lowest contribution to U. In particular, when N is sufficiently large there will be no "ties":

every non-minimal configuration has at least one site s such that changing the sign of z.

strictly lowers the energy. Random graphs have been key in making our model-independent

segmentation algorithm computationally feasible.
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4. BOUNDARY DETECTION

Here we study boundary placement (without segmentation per se) including the problems

of locating sudden changes in depth (occluding boundaries) or shape (surface creases, etc.).

The idea is to define contours which are faithful to the 3-D scene but to avoid the non-

physical edges due to noise, digitization, texture, lighting, etc. Obviously, there are global

discontinuities, such as shadows, which are essentially impossible to distinguish from the

occluding and shape boundaries, at least without higher level information or information

from multiple sensors, in which case boundary classification becomes possible.

The complications are well-known: digital edges tend to be very noisy, due in part

to the digitization process itself, but also to de-focusing and random effects in detecting

the photons. The result is a variety of pathologies: "true" boundaries suddenly disap-

pear, spurious ones appear haphazardly, and in general the surface transitions are highly

redundant.

We formulate boundary detection as a single optimization problem, fusing the detec-

tion o:edges, as well as pruning, linking, smoothing, etc.; there is no surface reconstruction.

The subject of edge detection is wildly active, and there has been considerable progress of

late in designing filters based on differential operators for optimally detecting various ideal

step, crease, and other edges in noise-corrupted 1-D and 2-D signals ([91,44],1561). Other

methods detect edges after fitting smooth surfaces to the data (138]436],[50]). Still others

([51449J,[56],[451) perform surface reconstruction and boundary detection at the same time,

and are cast in a framework similar to the set-up in [221.

The use of boundary maps as the input to further processing is ubiquitous in computer

vision; for example, algorithms for stereopsis, optical flow, and simple object recognition

are often based on matching boundary segments. Other applications include the analysis

of medical images (e.g. angiograms and ultrasound); automated navigation [6); and the

detection of the paths of roads and geologic faults, or the edges of lakes, flood plains, and

crop fields, in remotely-sensed images.

IMAGE MODEL. We will give an outline. The details can be found in 1211.

Denote the pixel lattice I(~j: < i,j ! N) by SP and let S9 denote another regular

lattice interspersed among the pixels (see Figure 6(a)) and of dimension (N - 1) x (N - 1):

these are the boundary sites.

We will mimic the pixel/label formulation used in §3: X = X. X 0). a pixel process

and a boundary process, with XP - fXf),EsP and XB = {X!J.C.5. The observation,



0 0 o
+ + 0 +

o 0 0 + + a 0
+ + 0 +

o o 0
(N = 3)

6(a) 6(b)

Figure 6.

process, or data, consists of grey-levels Yo,s E SP , possibly distorted due to the imaging

and recording system. Again we take X --+ Y to be a projection, so that Y = X P ,

assuming undegraded observations of the pixel intensities. (See [22] for boundary finding

with restoration.) Given y = z , we wish to assign values to the boundary variables

Z' = {zfs E SB}, where zB. = 1 (resp. 0) indicates the presence (resp. absence) of a
boundary at site s E SB. We have already discussed the corresponding interpretation of

boundary map zB = zB(y) in terms of physical discontinuities in the underlying three-

dimensional scene.

We establish a boundary resolution or grid size a > 1. (This is distinct from the

resolution of the pixels, although the two are naturally related.) Let SB) C S a denote the

sub-lattice {(io+ 1,Jo+ 1): 0 < iJ _ (n - 2)/o,). Only the variables x.B, s E SB%, interact

directly with the data; the remaining variables z., 8 E SB \ Ss), are determined by those

on hegrd B B SB
on the grid ) Figure 7 shows the grids $() and $(3) for N=8; the sites off the grid are
denoted by dots. Let liP and 0B denote the state spaces of intensity arrays and boundary

maps respectively, then
QP -{{4) aE SPO <- TP <255}, and fB ={{}:sES40,1)).P~ ~ ~ ~ ~~~~B : 3(,P E s "0<T, So,= 0I

+ .+ . + . + + . . + . . +

+ .+ .+ .+

+ + +

+ + + + + . . . . . +

(2) (3)

Figure 7.

The selection of a influences the interpretation of z. the computational load, the
interaction range at the pixel level, and is related to the role played by the size of the spatial

filter in edge detection methods based on differential operators.
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Let < s,t >o, s,t E S) denote a nearest-neighbor pair relative to the grid. Thus,

8 = (io + 1,jo + 1), t = (k- + 1, la + 1) is such a (horizontal or vertical) pair if either i = k

and j = 1 ± 1, or j = I and i = k ± 1. We identify < s,t >, with the elementary boundary

segment consisting of the horizontal or vertical string of a + 1 sites (in SB) including s, t

and the a - 1 sites between s and t.

A disparity measure At = A(') (x P ) will gauge the intensity fluz across < s, t >,, i.e.

orthogonal to the associated segment. We will experiment with several types of measures.

An obvious choice at high resolution (a = 1) is At = Ix' - xPI (or a suitable linear

transformation of this) where s, t* E S P are the two pixels associated with < s, t >,; see

Figure 6(b). The analogous choice at a lower resolution (a > 1) might be a measure of the
form A,, = m-'I ED, zr - ED2 tP I, where D1,D 2 C SP are adjacent blocks of pixels, of

the same size (m) and shape, and separated by < s, t >0. These and other measures are

discussed later on.

The energy function U(x P , ZB) should promote boundary maps zB which are faithful

to the data y = z P in the sense that large values of At(xP ) are associated with "on"
segments (ZfBZB = 1) and small values with "off" segments (z~XB - 0). There are no

a priori constraints on xB at this point; in fact, for most actual scenes x P , the energy

U will actually favor maps zB with undesirable dead-ends, multiple representations, high

curvature, etc. A simple choice for the xP/zB interaction is

U(,P,zB) = E (1 -

<s,t>.

where the summation extends over all nearest-neighbor pairs < s, t >'.

Returning to the disparity measure, we employ one type for depth and shape bound-

aries and another for the texture experiments. In the former case, the disparity measure

involves the (raw) grey-levels only, whereas for texture discrimination we also consider data

transforms based on so-called directional residuals. Except when a = 1, the data sets are

compared by the Kolmogorov-Smimov distance [7), as explained below.

At the highest resolution (a = 1), the simple measure ixP. - XP I suitably normalized

(where a*,t' are the two pixels associated with the boundary sites s,t; see Figure 6(b)) can

be effective for simple scenes.

At lower resolution, let D1,D 2 denote two adjacent blocks of pixels, of equal size

and shape. An example is illustrated in Figure 8 for the case of two square blocks of size
52 = 25 which straddle a vertical segment < s,t >, with a = 3. Let xP(D,) - {xP s E Dj)},
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j = 1,2, be the grey-levels in the blocks and set

A P ) = d (x"(Di), x'(D2))

where d(-, .) is a monotonic function of the Kolmogorov-Smirnov distance between two

empirical distributions. This, for example, is the type of disparity measure we use for the

house scene and the radar scene (shown below).

o 0 0 0 0 0 0 0 0 0

+ (s)
0 0 0 0 0 0 0 0 0 0

D, o o o o o 0 0 o o D2

0 0 0 0 0 0 0 0 0 0

+ (t)
0 0 0 0 0 0 0 0 0 0

Figure 8.

Various enhancements in A are necessary to detect the more subtle transitions some-

times found between two textured regions. These include the use of multiple, high-order,
spatial features in the definition of d. In the experiments below, several such features were

used in segmenting the Brodatz texture collage.

The other component in the model is a penalty function V(zB) which counts the
number of "taboo" patterns in zB; states zB for which V(z) > 0 are "forbidden." For

example, boundary maps are penalized for dead-ends, clutter, density, etc. V(xB) denotes

the total number of "penalties" associated with xB E B These penalties are simply local

binary patterns over subsets of S,). Figure 9 illustrates a family of four such patterns;

they can be associated with any resolution a by the obvious scaling.

1
0 1 1 1

01 0 1 0 1 111

Figure 9.

The patterns in Figure 9 correspond, respectively, to an isolated or abandoned seg-

ment, sharp turn, quadruple junction, and too-small structure. Depending on a, the pixel

resolution, and scene information, we may or may not wish to include the latter three. For
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example, including the last one with 0 = 6 would prohibit detection of a square structure

of pixel size 6 x 6.

Finally, our image model is

il(zP,zB) = -u( ,= ), =
z

the usual Gibbs distribution, but confined to the allowed boundary states.

DEGRADATION MODEL. The degradation is again deterministic; we observe the

projected data y - zp +- (zP, zB).

POSTERIOR DISTRIBUTION. As in §3, this is just

II ((XP,zX)ly) = - exp f U(P, _B)} lV(.,)=o'zP=,.

ESTIMATING THE IMAGE. Our experiments in boundary finding have been with

(approximate) MAP estimators.

COMPUTING. This again is by stochastic relaxation. An extension of the theory outlined

in §2 is needed to handle the onstrained optimization problem

mifimi~e.i.v(,a),o (1- B.,ZB)A.,(ZP).

<&,t>.

By introducing the constraints slowly during the annealing sequence, a global minimum,

within the constrained subset, can again be found. The theory behind this enhancement of

stochastic relaxation is layed out in [21).

EXPERIMENTAL RESULTS. In each of Figures 10, 11, and 12 the original scene

is in the top panel. A version of stochastic relaxation is used to incorporate constraints
while minimizing U. The placement of boundaries is shown in the bottom panel. Figure

10 is a synthetic aperture radar picture of water and ice (water is the region generally

appearing darker), and Figure 11 is a collage of four Brodatz textures [8], chosen for the

rather subtle transitions created by their juxtapositions. The bottom panel of Figure 11

shows the evolution of the boundary process during relaxation.

FIGURES 10,11,12, ARE PLACED AT THE END OF THE TEXT.

DIRECTIONS FOR FUTURE RESEARCH. These models may be extended in many

directions. What follows is a brief description of two such generalizai tons.

22



(1) Other Boundary Primitives. The elementary boundary unit or primitive is a hori-

zontal or vertical segment whose length is resolution-dependent, namely a + 1 in pixel units.

As a result, a discontinuity running at 450 is detected and localized with less reliability than

one at 0' or 900, where the disparity measure has maximum sensitivity. An obvious remedy

is to replace the pairs < s, t >, by other primitive segments, e.g. a distinguished family of

triples, such as the six represented (up to translates) in Figure 13.

+ + + + + ++
+ + + + ++ +++

+

Figure 13.

More generally, for any such family A consider the interaction term

(1 - IISEAX)AA(x')
AEA

where AA(X P ) is a measure of the disparity in the A-direction. In Figure 13, these directions

are, respectively, 7r/4, 7r/4, -7r/4, -7r/4, r/2, and 0. One can imagine a variety of ways

to situate two appropriately shaped sets of pixels to straddle (and abut) segments such as

these.

(2) Multivariate Data. Data may be available from several sensors, e.g. multispectral

satellite data, or an optical camera and laser radar. One might integrate these with a

composite disparity measure of the type used in the texture studies, viz. A = max A(k) in

order to improve discrimination.

Another possibility is to attempt to classify boundaries, especially if range data is
also available. Let xP(') and XP(2) be range and brightness values, and let zx assume

three values, say 0,1,2, corresponding to "off", "occluding (=depth) boundary" and "other

boundary" (for instance a crease or shadow). Now design the energy function to couple

A(xP(1)) with .) = {E,}, = 6{i}(x,) and A(XP(2)) with 77 = {iq}, 77, = 6{. 2 }(xB); for

example, just add the two corresponding terms to form U. The penalty patterns are the
usual ones regarding dead-ends, etc., as well as mixtures of 0,1,2 corresponding to physically

implausible (or impossible) transitions.
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5. SINGLE PHOTON EMISSION TOMOGRAPHY

Emission tomography is used to determine the distribution of a pharmaceutical in a part

of the body such as the brain, liver, or heart. Depending upon the pharmaceutical used.

this concentration can be taken as a measure of local blood flow (perfusion) and/or local

metabolic activity. Glucose, for example, is taken up by neuronal cells in proportion to

metabolic activity, and the latter generally mirrors recent electrical activity. Thus, areas of

the brain most used in performing a cognitive or motor task will demonstrate a relatively

increased uptake of glucose immediately following the task. For the heart, pharmaceuticals

can be chosen whose uptake reflects local perfusion. The concentration of these pharma-

ceuticals can thereby be used to assess the adequacy of blood flow to the different parts of

the heart.

In single photon emission computed tomography (SPECT), pharmaceutical concen-

tration is estimated by detecting photon emissions from an injected or inhaled dose of

the pharmaceutical that has been chemically combined with a radioactive isotope. This

combined agent is called a radiopharmaceutical. The goal of SPECT is to determine radio-

pharmaceutical concentration (equivalently, isotope concentration or density) as a function

of position in a region of the body. Detectors with collimators are strategically placed

around the region of interest, and these are able to count photons emitted by radioactive

decay of the isotope. A detector will capture those photons which escape attenuation and

whose trajectories carry them down the bore of the collimator.

The determination from photon counts of isotope concentration as a function of po-

sition is referred to as reconstruction. Interest in statistical approaches to reconstruction

problems in emission computed tomography was greatly enhanced by the work of Shepp and

Vardi [551 on the use of maximum likelihood (ML) methods. There are earlier instances

of suggestions to regard the reconstruction problem as a statistical estimation problem;

however, the demonstration of the versatility of the approach as well as the specification of

algorithms that work were advanced substantially by Shepp and Vardi's work.

The image reconstruction problem, viewed as an estimation problem, is inherently

nonparametric: one seeks an estimate of a function of general form on a continuous domain.

As such, it is widely recognized that the estimates need to be regularized or smoothed, espe-

* cially in "small sample" implementations. Various approaches to regularization have been

* suggested, including penalized ML, the method of sieves, and Bayesian methods. In Geman

and McClure [241, we proposed that a priori spatial information be built into a statistical

reconstruction algorithm, in a Bayesian approach, by quantifying spatial constraints in the
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form of a Gibbs prior distribution. In Geman and McClure [25] we demonstrated the feasi-

bility of estimating parameters of the Gibbs prior from single patient data. A brief outline

of the Bayesian approach, with parameter estimation, follows.

IMAGE MODEL. Let X. denote the concentration of the radiopharmaceutical at the

point s = (x,y) in the domain Ql of interest. We shall take 11 to be a bounded two-

dimensional region, though for the models and methods we will describe there are no es-

sential changes when f is three-dimensional.

We shall construct a prior distribution on X that captures simple prior expectations

about the qualitative nature of the isotope density. Mainly, we wish to exploit the antic-

ipated smoothness of X. Neighboring locations will typically have similar intensity levels.

But we must also accommodate sharp changes in concentration, which might occur across

an arterial wall or across a boundary between two tissue types.

In the spirit of nonparametric estimation, we might construct the prior on a suitable

space of functions X : S --+ R. It is more convenient, however, to do the construction

on the discrete lattice domain S introduced in §2. The prior, therefore, is on the array

X = {X.}.Es. As usual, we adopt the Gibbs representation (2.1).

The expected configurations are those for which typical neighboring sites s, t E S have

similar intensities X 5,Xt. This is a local constraint and it is conveniently captured by a

locally composed energy function U,

(5.1) U(X) = EIq5(X, - X,) + E 1_'(X' - Xt).
(S'tJ <S, t >/2

Here we use Is, tJ to indicate that s and t are nearest horizontal or vertical neighbors in the

lattice S, and < s, t > to denote diagonal neighbors. The constant / is positive and the
function j6(e) is even and minimized at = 0. Thus U is minimized by configurations of

constant intensity. Under the Gibbs distribution with energy (5.1) the more likely isotope

densities are those with small site-to-site variation in intensity.

To achieve the desired properties for the more likely isotope densities, the exact form

of q5 is probably not important, but its qualitative features can make a difference. We have

experimented with O's that are increasing in for > 0. An obvious choice is 40( ) = ,
but then under II(X), large intensity gradients, as would be associated with certain natural
boundaries, are exceedingly unlikely. Instead, we use functions of the form

-1

(5.2) 0M = 1 + (E/6)2
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where 6, like (, is a constant to be fixed later.

Levitan and Herman [41] have recently proposed the use of Gaussian priors in a

Bayesian formulation. Liang and Hart [42] also suggest the use of Gaussian priors, as well

as others, deduced by max-ent arguments from prior constraints on low-order moments of

X. Our earlier experiments with the quadratic energy function indicated that the resulting

Bayesian algorithms oversmoothed real boundaries where the difference (X, - Xt) should

be allowed to be large. The finite asymptotic behavior of our 4-function was designed to

mitigate this oversmoothing.

DEGRADATION MODEL. We assume that the detectors are arranged in a linear array,

at equally spaced lateral sampling intervals, and that the detector array can be positioned

at any orientation 0 relative to the x-axis. (See Figure 14.) We assume the detectors axe of

so-called parallel bore type, meaning that they detect only those photons in a small interval

[8 - A8/2, 0 + A8/2] when the array has orientation 0. Let L denote the total number of

detectors in the array and let Aa denote the spacing between detectors.

a

s=(x(y) 0 •

t Cj' k

y

x

Figure 14. Detector Geometry.

The physical effects incorporated in the model are the spatial Poisson process that
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describes the sites of the radioactive decays from which photons emanate and the process

of photon attenuation by which photons are annihilated and their energy is absorbed by

matter through which their trajectories pass. Attenuation is accurately described by a

linear attenuation function p(a) on fl. The function p is assumed to be known; values of

I for bone, muscle, etc. and for various photon energies are known a priori or could be

measured by transmission tomographic methods. Attenuation is a memoryless process and

we can thus deduce the functional form of the probability that a photon survives to reach

the detector array. When a photon trajectory has direction 0 and it emanates from site

s = (x,y) in 11, then

P(photon survival) = exp{ - p(. , q)dl},

where the line integral is taken over the segment £(x, y) from (z, y) to the detector and dl

is differential arc length.

For our sampling design, we shall position the detector array at n equally spaced

angles Ok for duration T time units at each angle. Then at each angle, we observe the

random variables Y, for t E Dk = {(aj,k),j = 1,... ,L} that give the numbers of photons

reaching the respective detectors during the sampling interval. Assuming that (i) photons

are generated by a spatially nonhomogeneous Poisson process with intensity X. per time

unit, and (ii) the orientations 0 of photon trajectories are uniformly distributed on 10,27r),
we can show that Y, for t E D = U:= I Dk, is itself a Poisson process with a nonhomogeneous

intensity function described in terms of the attenuated Radon transform (ART) of X. The

ART of X is defined as

(R ,,TX)(a,O) = j TX(x, y) exp(- j ( , i7)dl')dl

where £ is the line with orientation 0, through point a of the detector array, £(z, y) is the

segment of C starting at point (z,y) in f0, and dl and dl' are differential arc length in the

two line integrals. The intensity function of Y is then given by

8,+A'/2 f,+A/2
EY = (Rp,TX)(o,O)dadO,

JO.-A0/2 JIi-Av/2

where t = (oj, Bk). The important feature of this representation is that the intensity function

of Y is the result of applying a positive linear integral operator AT to X:

(5.3) EY = ATX.

By further exploiting properties of the Poisson process, it can be shown that the

observables Yt are mutually independent and Poisson distributed; the likelihood function
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is then easiy obtained from (5.3). Recall our discretization of the domain 0 into pies
pa~raieteised by discrete points a in a square lattice S. Now {X.)4Es represents a piecewise

constant appradimation of the isotope concentration on the continuous domain. When 01 is

discretised, then equation (5.3) takes the form

EY = ATX,

where AT is a matrix, AT = (A(t, 3))EDCEs; commonly, the order of AT is extremely large

and it may not have full column rank. Now for a given X, the Poisson probability function

of Y is

(5.4). ll(YIX) = rT [(ATX)(t)]Y' exp{-(ATX)(t)}

It is interesting to examine reconstruction by the method of maximum likelihood,

which calls for choosing X to maximize ll(YIX), given observed counts Y. Shepp and Vardi

[55] have developed effective algorithms based on EM (Dempster, Laird and Rubin [16]) for
implementing ML reconstructions in positron emission tomography (PET). A penetrating

description, written from a statistician's perspective, is given in Vardi, Shepp and Kaufman
[57]. (In PET, photon attenuation does not enter the model relating isotope concentra-

tion to the observables.) McClure and Accomando [1] have developed the foundations for

applying ML to SPECT reconstructions and have implemented EM algorithms on a vari-

ety of computer systems. Independently, Miller, Snyder and Miller [481 have made similar

extensions of ML and EM for SPECT.

The log-likelihood function is

In L(X) = E { - in(Yt!) + Y In[(ATX)(t) - (ATX)(t)}. (3.2)
tED

The necessary conditions for maximizing In L(X) obtained by setting derivatives to zero do

not yield explicit solutions for a maximizing X. Nonetheless, - In L(X) is globally convex,

and the ML optimization problem conveniently adapts to the EM method. In general,

- In L(X) is not strictly convex; this is an identifiability issue related to the column rank

of AT. Conditions for strict convexity are discussed by Accomando (1].

POSTERIOR DISTRIBUTION. From (2.1),(5.1)45.2), and (5.4) the posterior distri-

bution on X is

(5.) I(I I exp{-U(X) + [Ytln[(ATX)(t) - (ArX)(t)))
(5.5) (XY)- Z(Y)

2ED
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where Z(Y) is a normalizing constant that depends on Y.

ESTIMATING THE IMAGE. Our experiments indicate that the minimum mean squar-

ed error (MMSE) estimator (X" = E(XIY)) is more appropriate for the reconstruction

problem than the MAP used for texture classification (13) and boundary detection (§4).

COMPUTING. We initialize X = X(O). In practice, we choose a "good" initialization,

such as the maximum likelihood reconstruction via EM, but easy theory says that conver-

gence is independent of the initialization. Stochastic relaxation produces an ergodic Markov

chain with equilibrium (5.5). The ergodicity of the chain guarantees that an ergodic average

of fX(r))'0 will converge to X0 a.s. In practice, we compute N iterates and average the

final M, with choices such as N = 25 and M = 5. The selection of suitable M and N can

be guided by monitoring stabilization of statistics of the successive iterates X ('I .

PARAMETER ESTIMATION. The choice of P is critical. With / = 0 the estimator

is undersmoothed, and in fact MAP estimation is just ML, since the prior is uniform. If '3

is too large, the estimator is too faithful to the prior and is oversmoothed. The parameter

6 is also important, though we have found that (i) its value can usually be set based on

information about the range of values {X.), and (ii) reconstructions are not sensitive to

moderate changes in 6. The discussion here will focus on P. I

Because of the setting in which reconstruction algorithms are actually used, it is

desirable to design estimation methods that work with a sample k of size one from the

observable process. The isotope density X is assumed to be drawn from a Gibbs prior
with unknown P, but known 6 (5.2). We shall estimate f from Yk and use the estimate 4

in the MMSE or MAP reconstruction program. It is reasonable to do this with a single

observation k, since k contains a large amount of data about X, which, in turn, contains

a large amount of data about the local energy function U(X).

To be more explicit about the dependency on 0 of the prior and posterior distributions,

we introduce the function

V(X) = 4  -X ,) + (x. - x0).
(,ta <r2 >

V is just U/. The prior is now written

11(X) exp-,OV(X))

and the posterior, given k, is

II(XIY') - I (Yz-exp{J-V(X) + Z[ltlin(AX)(t) - (AX)(t)]}
Z4 ,(Y) iED
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Now V(X) is a complete-data suffcient statistic for f. If we were able to observe f
directly, then we could, in principle, solve the likelihood equation

(5.6) EO[V(X)] = V(X()

for the ML estimate of 03. The left-hand side of (5.6) is strictly decreasing in /3 and thus

(5.6) yields a unique root 1.

Our situation is more complicated than this since we do not observe XC, but instead
we see only the incomplete data k. We have a classic setup for application of EM. The EM

algorithm, when it converges, will yield a root of the incomplete-data likelihood equation

(5.7) E0[V(X)j = E,(V(X)IY);

see Dempster, Laird and Rubin [16]. We note that there is no proof of uniqueness of roots

of (5.7). Conceptually, (5.7) is solved at the intersetion of two monotone decreasing func-

tions of /. Whether (5.7) does admit multiple solutions is an open and elusive theoretical

question.

To solve (5.7), the EM algorithm consists of two alternating steps--estimation of the
right-hand side of (5.7) for prescribed 0 (E-step) and computation of the root / of (5.7),
substituting the current estimate of E#(V(X)jY) on the right-hand side. Specifically, we

fix an initial P = 30 and an initial X = X' (and hence VO). Then solve

F-step. Estimate the complete-data sufficient statistic:

(5.8a) V(7+1) = E,,)(V(X)IY)

M-step. Determine /3(+ }1) as the solution of

(5.8b) EO[V(X)] = V('+,).

The first step is done using stochastic relaxation, using say ten steps of stochastic relaxation

and averaging the last five values of V(X(v)). The second step is a simple root-finding

calculation once the curve Eo(V(X)] is known. Conveniently, the stochastic relaxation

procedure simultaneously yields updates X (') of the MMSE reconstruction. Thus (5.8a)
and (5.8b) together give a completely data-driven method of reconstruction.
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The construction of E#[V(X)I as a function of 0 can be done off-line, once and for all.

We have done this using stochastic relaxation to simulate 230 configurations X from the

prior (4.1) for #-values ranging from 0 to 6. Five replications were done at each of forty-six

values of P. The resulting curve, fit by a cubic-spline regression function, is depicted in

Figure 15. The calculation of this curve required forty-one hours of CPU time, using a

highly optimized program on the 100 Megaflop Star Technologies ST100 Array Processor.

WUPC7TU V(X) PER PM
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E J.
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Figure 15.

J. Mertus [461 has developed an efficient vectorized FORTRAN programn for the EM

estimation/reconstruction procedure described above. Each E-step, with ten sweeps of

stochastic relaxation, takes on the order of seven minutes of CPU time on an IBM3090 or

about three minutes on a CYBER 205, working on a 64 x 64 pixel lattice S, for isotope

densities X having their support on a disk of diameter 44 pixels (about 22cm) and with a

range of 64 grey levels. (These values correspond to our real data sets.) The computational

requirements are enormous, but not prohibitive.

EXPERIMENTAL RESULTS. We report on two experiments whiclh have been run

on real and simulated data to learn about the performance of the Bayesian reconstructionI
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methods. One simulation experiment was designed to test the versatility and robistness

of the methods to known departures from the model. The other experiment illustrates the

performance of the algorithms on real data from a lung section.

Experiment 1. A phantom isotope density (Figure 16A) was designed to have a combi-

nation of (i) large-scale structure, including subregions of 0 with considerable differences

in intensity, and (ii) local irregularity of the same qualitative nature as that of sample

functions from the Gibbs model with energy (5.1)-(5.2), yet not precisely fitting the Gibbs

model. Two functions were averaged to form the phantom. First, an array with a sharp

spike in intensity (near the center, below the middle) was constructed. Second, an array was

sampled from (2.1) (using (5.1)-(5.2)) with parameter values 0 = 1, and 6 = 12. Intuitively,

the local structure of the average will be governed by the array sampled from the Gibbs

model. But observe that the rescaling of this array due to the arithmetic averaging means

that it will not exactly fit a model from the same family. Roughly speaking, the averaging

has the effect of smoothing the array so that it will be better described by a Gibbs model

with larger #-value, assuming 6 is fixed for now. We thus anticipate estimated values of (

larger than the value 0 = I used to generate the Gibbsian part of the averaged phantom.

To simulate the emitted photons, the constant linear attenuation function p - 0.2

was chosen, corresponding to approximately ten percent attenuation per centimeter for our

scaling of the real system. A total of 663,144 photons were counted at 64 angles 0, with

L = 64 bins on the linear detector array; in actuality, only 44 of the bins collect positive

counts because the support of the phantom is contained in a smaller disk of diameter 44

pixels.

Reconstructions are depicted in Panels B-E of Figure 16. All were constructed on

the range [0,63] with parameter 6 = 12. The MMSE reconstruction, with 3 estimated by

EM (5.8) is shown in Panel 16B. When 0 was initialized at 0o = 0.0, the successive EM

iterates from (5.8b) were 0.52, 0.72, 0.8.5, 1.01, 1.18, 1.29, 1.34, 1.38, 1.40, 1.41, ... , 1.47

after thirteen steps of (5.8b). The MMSE in Panel 16B was run at = 1.47.

The maximum likelihood (via EM) reconstruction is shown in Panel 16(". Panel 161)
shows an MMSE run with a value of 0 = 0.52, which is too small (undersinoothing).

Panel 16E shows an MMSE run with a value of4 = 4.40, which is too large (oversmoothing).

FIGURE 16 IS PLACED AT TiHE END OF TIlE TEXT.

Experiment 2. A total of 124,136 photons were counted from a cross section of a patient's
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torso, including the lungs. For the reconstructions, we set the linear attenuation function

again at p = 0.2. The reconstructions were done on the range [0, 63] with fixed 6 = 12.

Panel 18A shows the maximum likelihood (EM) reconstruction. The "hot spot"

(tumor) in the lung is apparent, but local structure is difficult to distinguish. Panel 18B

shows the MMSE reconstruction with fl estimated at A = 4.56 after four steps of the EM

estimation procedure (5.8); here we initialized 0e = 6.0.

FIGURE 18 IS PLACED AT THE END OF THE TEXT.

DIRECTIONS FOR FUTURE RESEARCH. (1) Fast, Direct Parameter Esti-

mators. The smoothness of the reconstructions is sensitive to the pivotal parameter 3.

Controlled experiments, using samples from the Gibbs prior with known P, indicate that

EM (via equation (5.8)) is an effective procedure for estimating P. However, it is very

computationally intensive. We are continuing to study an alternative method of moments

estimator. The goal is to have a direct estimation method for P that can be applied to the

observable k without requiring intermediate reconstruction of X. We construct a statistic

M(Y) based on the notion that the smoothness of Y will reflect the magnitude of # in the

same way that the smoothness of X does.

As an example consider the following statistic, which we intend to study further.

For the detector bin at angle 0& and at sampling step oa, denote t = (aj,8) and t+ =

(a+I,O),j = 1,..., L - 1, k = l,...,n. Also, introduce the notation a(t) = (AT1)(t), where

I is the vector with components identically equal to one; a(t) is simply the row-sum of AT

associated with the detector at location t. Then define the moment statistic

Y(L/2)+R Y1 ye 7 Y Y

Y-9 E ad~mt~) -a(t+)/ a2 (t) a 2 (1+-)

In the limits on the summation R is a radius of a window on the detector array over which

the summands are accumulated. The expectation of M(Y), for given X, is a measure of

roughness of normalized ART projections of X:

2

E(M(Y)IX) =-- T' ["4 TX(L) ATX(L+)
a(t) a(t+)

We anticipate that the expectation EO[M(Y)] with respect to the prior will have the same

general behavior as F[V(X)) in (5.6). Accordingly, we define the moment estimate JI" of

L3 as the root of the equation

(5.10) EO[M(Y)] = M().
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The effort to compute 8* is trivial, once the left-hand side of (5.10) is known as a function

of '0.

We have constructed the curve describing Ep[M(Y)] using the same simulated X-data

that generated Ee[V(X)] in Figure 15. Figure 17 shows the resulting curve; it does, indeed,

exhibit the same qualitative behavior as the curve in Figure 15. We plan to test this and

other moment estimators on real and simulated data, in order to develop an accurate and

computationally effecient estimator for 0.
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Figure 17.

Our initial experiments with the moment estimator suggest that the statistic M(.) is
not robust as one would like with respect to certain kinds of boundary singularities in X.

We intend to study alternatives to M in which the summands are less sensitive to large local

variations than are the quadratic terms in (5.9). Analytical difficulties are compounded,

however, for the robust alternatives.

(2) Improvements of the Degradation Model. The model presented here includes the
predominant physical effects. But we have assumed that other potentially significant effects,
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such as photon scattering and background radiation, to be negligible. Further, we have not

included effects from the sensor, such as imperfect collimation, bl-irring, and noise. It has

been established that these effects can contribute significantly to the degradation (see, for

example, [19]). We note, however, that the reconstruction methods described, since they are

based on the generally applicable principles of maximum likelihood and Bayes optimality, are

adaptable to models incorporating additional physical and sensor effects. We are currently

studying extensions for scattering and collimation errors. These extensions will significantly

increase the effective size of the ART, and thereby present difficult computational challenges.

(3) Alternative Methods of Noninvasive Testing. We intend to study extensions

of our Bayesian reconstruction method to other modalities of noninvasive imaging and

nondestructive testing. Currently we are initiating studies with ultrasonic imagery.

6. GLOBAL IMAGE ANALYSIS

Our model-based approach to image processing has its roots in a general pattern theory

layed out by Grenander [321. In our discussion here of global image analysis we shall adopt

the terminology and notation developed for that theory, which is especially well suited for

describing global geometric attributes. There is an equivalent, but less natural, formulation

in the statistical mechanics/MRF language used in the discussion above.

AIM. Our approach is model based. Starting from a mathematical model of the patterns

(image ensemble) that we are dealing with we derive algorithms for pattern inference from

the models by appealing to first principles.

We are primarily concerned with patterns exhibiting a high degree of variability, such

as those appearing in biology/medicine. It is then natural to account for the variability by

probabilistic models.

A situation of obvious practical importance, as well as scientificay challenging, is

when we know in advance that the image contains an object of known type but of unknown

shape. We may know for example that the image contains a kidney, a heart, a leaf, and so

on, and we seek i precise characterization of the object: object identification.

The purpose may be to detect anomalies or to measure certain characteristics on the

globally estimated object. What matters then is the variability in the object shape.

We desire an accurate characterization even though the picture may be very noisy. To

get that we appeal to the prior knowledge we have of the variation in shape for the object.
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It is clear that global models are needed for such a task, it is a matter of high level
image analysis.

GENERAL APPROACH. We have long employed methods from metric pattern theory

to formulate and analyze the random variation of patterns. An early realization of this idea

was given in Grenander [30), and was applied to pictorial patterns in Grmander [31], pp.

40-51.

The resulting probability measures are known as regularity controlled probabilities,

or Gibbs measures on configuration spaces, or incompletely observed Markov processes on

graphs. The underlying principle is that they attempt to catch variability by relaxing

regularity in the patterns.

Recently this was generalized and studied in greater depth in Grenander-Keenan [34]

in the following way. Starting from primitive geometric objects, the generators g, in some

space G, we combine them into configurations

(6.1) c = o(go,gi,... ,g-i) E C(R)

in a configuration space. Here a denotes a connector graph with n sites, and regularity
constraints are imposed on any generators connected directly by a segment in the graph;

the generator g, is situated at site i of a.

We start with one or several templates c("), not necessarily with the same connector

graph. For a given group S, the similarity group, with elements generically denoted by s,
we define a measure on Sn by

1 n-I n-I

(6.2) ASo,s,... ,, _81 )= i JJ Ai(si,8+) :o Qi(si)
i=O i=O

where p is understood as a Radon-Nikodym derivative with respect to a fixed measure on

Sn , usually a Lebesgue or counting measure. The acceptor functions Ai express the cou-

pling between contiguous group elements si-group elements that are compatible with the

connector graph a-and the weight functions Qi control the frequencies of their occurrence.

Applying the stochastic operators to the templates

(5.8) C(&) - (sot 31,. •. - 1 ) S c(&) ,

but restricted to the regular configuration space C(1), will define a probability measure on

C(R). A rigorous study of how this is done can be found in Grenander-Keenan [34] and in

Grenander (321 (Volume I1, Chapter 3).
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To make the above concrete let us consider some examples. For pictorial patterns in

the plane we can choose, for example, generators as points in R2 and S as the translation
group. Or we can let the generators be sides in polygons (or splines with other arc elements)

and S the group of uniform scale change. Or, with the same generators, we can let S be

the afline group in the plane, and so on.

In these examples the obvious choice for the connector graph is u E CYCLIC, but al-

ternatives with 'transversal' bonds are also of interest for generating patterns with (relaxed)

symmetry, for example of bilateral form.

We believe that the creation and mathematical analysis of such random shape models
are fundamental for achieving the tasks of global image analysis. Once the models are
well understood and empirically supported we can apply methods of statistical inference to

them.

SPECIAL RESULTS. We have carried out pattern inference in 2-D as outlined above in
a number of instances.

Simulated Pictures. To test the methodology, image reconstruction was implemented

based on random shape models. The result compare favorably with local methods. Some

examples are given in Grenander [331 and Grenander-Keenan [34].

Leaf Shapes. Simulated data are good for testing methods and software, but are not

enough. It is necessary to try the methods on real data. We have therefore also applied

the same methodology to a type of biological patterns, namely the shape of leaves from
trees. The data collection phase has been completed, as well as the development of software

for handling images obtained by hardware we have acquired recently. Algorithms, both

for image restoration and object identification, have been derived and some preliminary

experiments have been carried out. This work with A. Knoerr is still in progress.

Limit Theorems. We have used our method of stochastic relaxation extensively in our

computer experiments. The power of it resides in its general applicability, but we pay a

price for its universality: it often requtires massive amounts of CPU time. This is especially
true in 3-D; see below.

We have tried to compensate for this by analytical means. It has been known for sev-
eral years that, in special cases, and when stochastic relaxation is slowest (strong couplings,

large configurations), the Markov processes on graphs can be approximated by Gaussian

processes; see Chow-Grenander [13].

More recently it has been shown that such limit theorems can be proved in more

1 
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general situations, Chow [12] and Grenander-Sethuraman [35]. Since Gaussian processes

are easily simulated this makes it possible to reduce the CPU-time requirement drastically.

Fitting the Models. In order that our analyses be practical the model must be anchored

empirically. In particular their parameters must be estimated from data. In the random

shape models we do not have statistical homogeneity, generators at different sites may have

quite different statistical properties. We must therefore study estimation based on a sample

of several pictures. This has been done in Osborn [51].

3-D Experiments. We have tried our models in 3-D situations, so far only for pattern

synthesis. In this case wve used stochastic relaxation in a straightforward manner, since

we do not yet have access to the sort of limit theorems for 3-D mentioned above. The

computing is so heavy that it was necessary to use a supercomputer, a CRAY XMP 48.

DIRECTIONS FOR FUTURE RESEARCH. Based on the methodology we have

developed and the the experience we have gained in applying them, we shall proceed to

more challenging tasks in global image analysis.

With priors of the form (6.2) and denoting the resulting random image by I we relate

I to the observed digital IV by a stochastic deformation mechanism V

V :1 I-*I

mapping the pure image algebra.1 = RY (where R is the identification rule, see Grenander

[32], Volume 1, Secton 3.1) into the deformed one. Before discussing the form of V it is

necessary to mention some difficulties that arise as we go from 2-D to 3-D.

As generators we can choose vertices or edges or faces of polyhedra (or other spline

surfaces): all three possibilities will be examined. We shall choose the connector graph s

for the template (or templates) as the vertices of a regular icosahedron further refined by
successive triangulations, using equilaterals. This results in a regular distribution of points

on the template surface assumed to be topologically equivalent to the sphere, and avoids
the singular behavior of a at the poles if we had used a standard longitude-latitude grid.

The successive triangulations are useful for implementing the inference algorithms which
will be hierarchic: starting with crude templates they will be successively refined.

Global 3-D Inference. Extending what we did in R 2 to R13 we have to simulate the

posterior

(6.5) p(c I IV) x p(c)p(I Re It ~J)

where the last factor is due to V.
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We shall investigate three models for the deformation V:

a) visible light

b) range data

c) ultrasound.

We already have the hardware and some of the software for a). At present we do

not have any sensors for b) and c) and will have to operate with simulated data during the

stage when we fix the models and derive inference algorithms.

This is not sufficient, however, we should also test the methods in a real world setting.

We shall therefore try to get access either to sensors for b) and c), or, at least to data

obtained under realistic conditions. We do have good sources for echocardiographic data

(c), in particular.

To simulate (6.5) we shall try to avoid straightforward stochastic relaxation with single
site updating since this would be computationally awkward. Instead we appeal to pattern

theoretic limit theorems of the type discussed above, so that we can simulate conditional

probabilities for subsets of the configuration c with more than a single site. As a matter
of fact we may be able to simulate the whole configuration using (6.2) combined with the

factor p(c -* IV). This appears to be computationally feasible.

Note that in this way we make global inferences about the image that incorporate

prior knowledge about the whole surface. A number of analytical problems have to be
resolved, however, before this ambitious goal can be achieved.

The Correspondence Problem. Among these we mention in particular the correspon-

dence problem. Consider the boundary described by the configuration c and a boundary c*

obtained from PD. Say that c* consists of a set of points z,, for v = 1,2,..., N, that have
arisen from some points (G on c. If we knew the (, we could calculate, at least in principle,

the likelihood that D carries the {(,} into {z1,}.

The trouble is that this correspondence is not known to us. Instead we will have to

treat the (,, as nuisance parameters that have to be estimated during the inference. In 2-D

this can be done with reasonable computing effort by a dynamic programming algorithm.

In 3-D we do not yet have any fast algorithm for dealing with the correspondence problem.

This is for the case when the inference is based on an 'empirical boundary' c*. If,
instead, we use only contrast based inference, as is natural for low signal-to-noise ratios.

the correspondence problem does not appear.
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Generator Estimation. We do not avoid it entirely, though, since we meet it during an

earlier phase when the template surface (or curve in 2-D) is estimated from data. Again
we do not know the correspondence. We plan to deal with this difficulty byextending a

method for template, or generator, estimation that we have developed, but not yet tested,

in R2 .

The Icosahedral Process. Another analytical topic that has to be studied is what are

the properties of the priors to be used in 3-D for the random template surface. To fix ideas

say that we choose edges as generators. The measure in (6.2) can be viewed as a Markov

process on the triangulated icosahedral graph taking values in a low dimensional Lie group

S. Applying the si-elements to the edges go of the template we must have conditions

satisfied in order that gi = sipg are consistent

(6.6) Lcyce = Esj9 = 0
cycle

for all closed cycles of the graph a. We can find p independent cycles, where A is the

cyclomatic number for the graph, by a constructive procedure starting from a minimal

spanning tree (see for example, Giblin [261). But, since the number of constraints will be

large in 3-D in contrast to 2-D, we need a systematic and computationally feasible way of

constraining the probability measure of the gi's.

We should also extend the limit theorems for Markov processes on graphs described

above to this sort of graph. The limiting Gaussian processes are believed to have covariance

functions that are Green's functions of differential operators simply related to the neigh-

borhood structure of the graph, but this statement should be made precise and proved.

Ergodicity. In situations where the limit theorems do not apply (for example with weak

couplings) we are forced to employ stochastic relaxation. To justify stochastic relaxation
we have to prove ergodicity (in time) of a Markov chain with a continuous state space. This

reduces, in each special case, to an "elementary" problem in plane geometry.

As an example consider the configuration space C of all closed and non-self-intersecting

polygons in R2 (similarly in R3) whose sides have given directions but arbitrary lengths.

Denote the lengths by 11,12,...,ln so that we can represent a configuration as c =

(11,12,...,l). The ergodicity mentioned can be established by proving that any two points

(6.7) c1 ,c 2 E interior(C) C R' - 2

can be joined by a continuous curve passing through the interior of C.
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This innocuous proposition has not yet been proved in spite of several attempts and

discussions with a number of geometers. Many versions of it appear, for different updating

schemes, but only some have been proved so far.

Software. We need software, for the object identification algorithms, but also for the data

analysis of images that will precede and accompany the analysis of the models to be used.

During the data analysis stage computing efficiency is not as crucial as for the inference

algorithms. We have started to develop data analysis programs in APL and plan to do this

for the following tasks.

a) local Karhunen-Lo~ve analysis

b) smoothing programs, linear, median, and trimmed mean filtering

c) primitive operations on surfaces: rotate around an axis, stretch, turn around an axis,

push and pull the surface at a point, all for icosahedral/triangulation vertices

d) display template surfaces, I , and the object identified by our inference algorithms.

e) simulation of range data and ultrasound data

f) standard image operations like edge detection.

This code should be easy to write and will be useful for data analysis.
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FIGURES.

Figure Legends.

Figure 2. Wood on plastic background.

Figure 3. Carpet on plastic background.

Figure 4. Wood, carpet, and cloth on plastic background.

Figure 10. Synthetic aperture radar of water and ice.

Figure 11. Brodatz collage with four textures.

Figure 12. House scene.

Figure 16. Phantom isotope density and reconstructions.

Figure 18. Lung cross-section and reconstructions.
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Figure 2. Woode on plastic background.
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Figure 4. Wood, carpet, and cloth on plastic background.
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Figure 10. Synthetic aperture radar of water and ice.
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Figure 11. Brodatz collage with four textures.
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Figure 12. House scene.
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Figure 16A-D. Phantom isotope density and reconstructions.
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Figure 16E. Phantom isotope density and reconstructions (cont).

Figure 18. Lung cross-section and reconstructions.
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